

Distributed Solar-Thermal Combined Heat and Power

Zack Norwood, LLNL Engineering

2007-2-22

LBL EETD

Outline

- Why Solar-thermal?
- Technology
 - Low-temp heat-engines (Stirling, Rankine)
 - Thermodynamic analysis of system
 - Non-imaging concentrating parabolic collectors
- System Analysis
 - Costs
 - Demand scenarios

Turning Concepts into Reality

Why Solar in California?

- Combined Heat and Power
 - w/ thermal storage at moderate temps (<500K)
 - on-demand electrical with low-temp heat engine generator
 - domestic hot water
 - space heating
 - refrigeration, cooking, etc.
- Distributed or centralized power

Added Value of Heat

- Proximity to residence or business (distributed system)
- "Waste" heat can be more than 4 times electricity
- Displaced natural gas is \$8.00/MBtu, or about
 27 conto/l/Mb with \$55/ besting officions/
- 1.87cents/kWh with 85% heating efficiency.
- Added value of heat between 2 and 7 cents/kWh

Turning Concepts Into Reality

Why Solar-Thermal? Storage.

- Electrical storage
 - expensive batteries/capacitors
 - small capacity
- Thermal storage
 - diurnal cycles easily overcome
 - seasonal storage possible in many locations
 - cost effective

Turning Concepts Into Reality

Why Solar-Thermal? Cost.

- Small scale CHP systems competing at retail prices for electricity/heat
 - Low capital cost: ~\$5/peak Watt Installed
 - Cheap distributed electric power: ~\$0.30/kWh
- Peaking Capacity
 - 65% capacity to replace peak power plants (15-30 ¢/kWh)
 - Solar is 50% undervalued! (Borenstein)
- Fuel Hedge
 - Price of natural gas is historically very volatile (& increasing)

Added Value of Solar

- Emissions Offset Borenstein, 2005
 - NOx currently regulated (\$3.50/lb -> \$20/lb in 20 yrs??)
 - PM10 currently regulated (\$4.90/lb -> \$20/lb in 20 yrs??)
 - Carbon likely to be regulated in the future (\$30/ton > \$65/ton?)
- Health Benefits
- Greenhouse Gas Abatement
 - Need 70% emissions reduction by 2030 to maintain less than 1 degree Global Warming (Hansen, 2006)

NOx and PM10 projected prices

SolFocus

Dedicated system for residences or businesses

Compete with *retail* rather than *wholesale prices* kWh: 11¢, 33¢ (peak) 5¢, 16¢ (peak)

Cost CSP: Cost conventional utilities:

30 ¢/kWh (with added value)

Water/EtOH System Diagram

Turning Concepts

R123 System Diagram

Working Fluids

Figure L. Modeled Rankine cycles with Ethanol, R123, and Water

Solar-Thermal System: The Expander

- Water and Ethanol
 - Environmentally preferable
 - High pressure ratio expanders needed for efficient electrical generation
 - Wet-expansion for water could be problematic
- Refrigerant (R123)
 - Good properties for rankine cycles including expansion pressure ratio
 - More complicated with additional heat exchanger
- Expander possibilities include piston, turbo expander, Tesla turbine, impulse turbine, Lysholm screws, Wankels, other rotary lobe expanders, etc.

Flat plate collectors are limited to temperatures below 100°C

Non-imaging optics

Turning Concepts

Existing Compound Parabolic Concentrator (CPC) Technology

System Capital Costs

- Installed Cost \$26,794
- Cost/kWh \$0.31
- Cost/peak W \$4.96
- Divided system into panels, bulk of system
- Used cost of materials for panels, retail cost of microCHP system for remainder, 50% install cost
- 15 year lifetime

Winston Series CPC, 18 panels								
<u>components</u>	weight (kg) \$/kg	cost (\$)						
housing: extruted Al	5.00	6.1	549.00					
back plate: Al Sheet .5 mm	3.01	2.86	154.99					
insulation: polyurethane foam	0.05	1	0.90					
reflector: Ag coated Al	7.00	6.1	768.60					
flow tubes: Cu	22.36	6.82	2745.39					
cover plate: glass	19.13	1.87	644.06					
total			4863					
Climate energy micro-CHP								
manufacturecd cost			13,000					
Installed Cost (\$)			26,794					
\$/kWhr			0.31					
\$/W			4.96					

Climate Energy Micro-CHP

System Analysis Scenarios

Scenario	Description
1	Electricity only
2	Electricity + DHW
3	Electricity + DHW + A/C
4	Electricity + DHW + Space heating
5	Electricity + DHW + Sp Heat + A/C

Scenario Results

Figure 2. Average California daily demand compared with the R123 solar-thermal systemÕs expected output of electricity and (a) hot water (b) hot water and air-conditioning (c) hot water and space-heating (d) hot water, air-conditioning, and space heating.

Turning Concepts into Reality

Scenario Results

P4 (kPa) P6 (kPa) Eta_t Eta_p	WaterCHP 1548 18.9 0.65 0.85	WaterEl 1548 3.537 0.65 0.85	EthanolCHP 1756 44.56 0.85 0.85	EthanolEl 1279 8.755 0.85 0.85	R123CHP 2900 276.9 0.85 0.85	R123El 3000 97.92 0.85 0.85		
Eff - Elec	0.08	0.096	0.085	0.104	0.087	0.11		
Eff - Heat	0.42		0.41		0.39			
E_net (kJ/kg)	397.2	506.1	/\ 180.6	241	34.49	50.28		
			4 }					
T1(K)	332	300	332	300	332	300		
T4(K)	473	473	473	473	473	473		
T_amb	290	290	290	290	290	290		
Q_in (kJ/kg)	2544	2678	1080	1187	212.2	234		
Q_out (kJ/kg)	2103	2116	879.6	919.1	164.3	178.1		
Q_regen		Flootrical	Conoration	Efficiency	44.65	45.79		
Electrical Generation Efficiency 44.65 45.79								
mdot	0.0074	0.0059	0.0165	0.0122	0.0670	0.0519		
Area (m^2)	45	37.6	42.5	34.7	33.8	28.9		
Imax (W/m^2)	825	825	825	825	825	825		
Eta_sol	0.51	0.51	0.51	0.51	0.51	0.51		
_ca_501	0.51	0.51	0.51	0.51	0.51	0.51		

Table A. Solar-thermal-electric Rankine cycle with all working fluids

Annual savings by scenario

Technical Design

- Rankine cycle
- Working fluids
- CPC Panels

Economic Analysis

- Installed Cost \$26,794
- Cost/kWh \$0.31
- Cost/peak W \$4.96

Scenario 1 system design

Use/demand scenarios

- \$950 to \$1400 power generation/offset demand
- 5 implementations considered

Laundry list to do:

- Design of low-temperature expander generator using Energy/Sustainability optimization integrated design process (UCB Mechanical Engineering, D. Dornfeld, C. Reich-Weiser)
- Integration of XCPC collectors with prototype system (UC Merced)
- Further economic analysis of natural gas / electrical offsetting scenarios to motivate DOE, CEC funding proposals

Needs:

 Connections with interested parties at LBL (Applied Helios?)